

Ballistic Galvanometer

OSAW India

• Ballistic Galvanometer Overview:

- $\circ~$ Developed in the 19th century.
- Measures the total quantity of electric charge passing through a circuit.
- Designed for short-duration currents (transient effects).
- Operates by observing coil deflection in a magnetic field.
- Deflection magnitude is proportional to total charge.
- Widely used in 19th and early 20th-century physics labs.
 Significant in electromagnetic induction, magnetic flux,

Line for Inerting link.

- capacitance, and inductance studies.
- Construction:
 - Coil suspended in a magnetic field.
 - $\circ~$ Mirror attached to the coil.
 - Optical measurement of deflection using a reflected light beam.

• Operation Principle:

- Based on electromagnetic induction.
- Charge passing through the coil causes deflection.
- Deflection magnitude proportional to total charge, not current.

• Ballistic Nature:

- Measures total displacement from a current pulse.
- Differs from standard galvanometers that measure steady currents.

• Applications:

- Measurement of magnetic flux.
- Measurement of capacitance and inductance.

- Instructions for Use:
 - $\circ~$ Place on a stable, vibration-free surface.
 - Ensure proper coil alignment and mirror adjustment.
 - $\circ~$ Establish a zero reference point with no current.
 - $\circ~$ Use a known charge or calibrated capacitor for scale checks.
 - $\circ~$ Verify sensitivity with different charges.
 - Insert coil into the experimental circuit with a smooth-action switch.
 - $\circ~$ Position light source for clear scale observation.
 - $\circ~$ Activate switch to initiate current and deflection.
 - $\circ~$ Measure deflection from zero point.
 - $\circ~$ Ensure coil returns to zero without residual deflection.
 - Take multiple readings for accuracy.
 - $\circ~$ Safely disconnect from the circuit.
 - $\circ~$ Recalibrate regularly and check for wear.
 - Operate in a stable environment.
 - Handle carefully to avoid damage.
 - Keep currents and voltages within limits.
 - Keep away from strong magnetic fields.

References:

- 1. <u>https://en.wikipedia.org/wiki/Ballistic_galvanometer#:~:text</u> =When%20an%20electric%20charge%20is,galvanometer's%2 0magnet%2C%20generating%20an%20opposing
- 1. <u>https://www.osawglobal.com/</u>

